
FIGURE 4.117

RAM methodology in the decommissioning phase.

Step one - Scope Definition: The boundaries of RAM analysis need to be defined as well as the source of data, the performance indexes target and the team to support the RAM analysis. The formal kick of meeting is the best practice to define the RAM analysis scope and it will be great if there will be a manager to sponsor the RAM analysis as well as the chronogram definition and project management concept application during the RAM analysis. The field data is a very important information and need to be from the current plant under assessment.

Step 2.1 – Reliability Growth Analysis (Crow AMSSA Model) : The effect of maintenance and operation conditions on aged equipment need to be taken into account to verify the trend of MTBF and predict future failures time for each equipment to define the next inspection time.

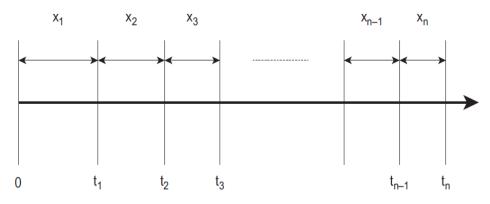


FIGURE 3.22

Inspection based on reliability growth (ReGBI).

Step 2.2 – General Renewal Model: The degradation factor needs to be predicted to be applied in RBD model in case of degradation

- Age reestablishment based on last intervention (Kijima I);
- Age reestablishment based on all interventions (Kijima II).

FIGURE 4.118

General Renewal Model.

Table 4.27 Reliability Database											
Equipment	Failure			Repair		Kijin	Kijima Factor		Crow-AMSAA Model		
Tank 1	PDF 2	Parameter	(year)	_	PDF	Parameter (hours)	Туре	q	RF	λ	β
	Gumbel	μ 7.48	σ 0.01		Normal	μ σ 120 20					
Pump 2	PDF 2	Parameter	(year)		PDF	Parameter (hours)	Туре	q	RF	λ	β
	Weibull	β	η	γ	Constant	repair time					
		0.56	0.685	0.052		24	П	0	1	6.1044	1.0655
Pump 3	PDF 2	Parameter	(year)		PDF	Parameter (hours)	Туре	q	RF	λ	β
	Weibull	β	η	γ	Constant	repair time					
		0.47	0.46	1.35		24	Ι	0	1	0.6777	0.533
Pump 4	PDF 2	Parameter	(year)		PDF	Parameter (hours)	Туре	q	RF	λ	β
	Weibull	β	η		Constant	repair time					
		0.7285	0.564			24	П	0	1	0.6522	1.6522
Pump 5	PDF 2	Parameter	(year)		PDF	Parameter (hours)	Туре	q	RF	λ	β
	Weibull	β	η		Constant	repair time					
		0.6363	0.8888			24	Ι	0	1	1.4076	0.5716

Step 2.3 – Lifetime Data Analysis: Based on equipment historical data, it's necessary to perform the lifetime data analysis. The specialist opinion is always important when no data is available and to validate the LDA results. The next step is to input the PDF parameter in the RBD model

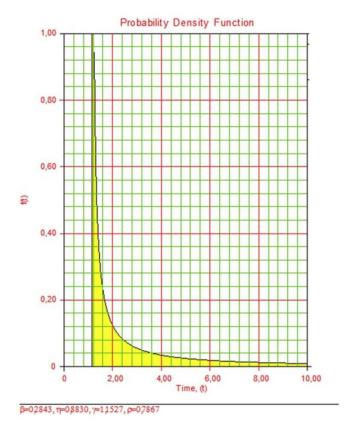
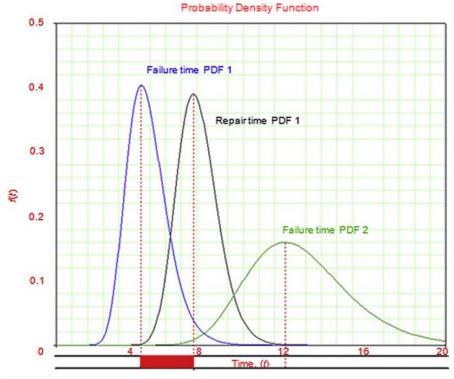
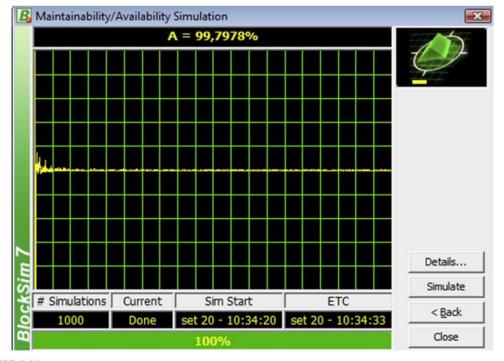


FIGURE 4.2


Furnace PDF.

		Fai	ilure Time	(year)		Repair	Time (hou	rs)	
TAG	Failure Mode	N N	Variables (PDF)				Variables (PDF)		
F-01 A	Coke formation	Normal		μ 4.95	ρ 2.66	Normal	μ 420	ρ 60	
	Incrustation	Weibull	β 0.51	η 1.05	γ 4.05	Normal	μ 420	ρ 60	
	Other failures	Exponential Bi p		λ 0.28	γ 3.22	Normal	μ 420	ρ 60	
F-01 B	Coke formation	Normal		μ 5.23	ρ 2.55	Normal	μ 420	ρ 60	
	Other failures	Exponential Bi p		λ 0.29	γ 4.07	Normal	μ 420	ρ 60	

Step 3 – Modelling: To perform RBD model including the degradation factor and compare with the RGA prediction to check the consistency


Table 4.28 RGA × MC						
Equipment	10 \	Years	15 Y	ears	2	0 Years
Tank 1	MC	RGA	MC	RGA	MC	RGA
	1		1.99		2	
Pump 2	MC	RGA	MC	RGA	MC	RGA
	9.7	8.89	14.09	10.98	18.3	12.76
Pump 3	MC	RGA	MC	RGA	MC	RGA
	4.24	3.15	6.44	4.28	8.56	5.28
Pump 4	MC	RGA	MC	RGA	MC	RGA
	15.37	12.88	22.6	19.3	29.91	25.27
Pump 5	MC	RGA	MC	RGA	MC	RGA
	9.06	8.87	13.23	12.13	17.42	15.24

Step 4 – Simulation: To define the simulation input such as lifetime, number of simulations, interval of results.

Block availability.

Simulation.

Step 5 – Simulation results (cont): To analyse the simulation result based on performance indexes achieved

Table 4.3 Simulation Result					
System Overview					
General					
Mean availability (all events)	0.9683				
Standard deviation (mean availability)	0.0092				
Mean availability(w/o PM and inspection)	0.9683				
Point availability (all events) at 26,280	0.971				
Reliability (26,280)	0				
Expected number of failures	12.52				
Standard deviation (number of failures)	3.5168				
MTTFF	1942.593				
System Uptime/Downtime					
Uptime	25,446.98				
CM downtime	833.02				
Inspection downtime	0				
PM downtime	0				
Total downtime	833.02				
System Downing Events					
Number of failures	12.519				
Number of CMs	12.519				
Number of inspections	0				
Number of PMs	0				
Total events	12.519				
Costs					
Total costs	0				
Throughput					
Total throughput	0				
PM, preventive maintenance; CM, corrective	e maintenance.				

Step 6 - Criticality Analysis: To define the quantitative impact of bad actor (low performance equipment) in the system considering the impact of operational availability, reliability, loss of production, number of downtimes, number of failure, and cost of failures.

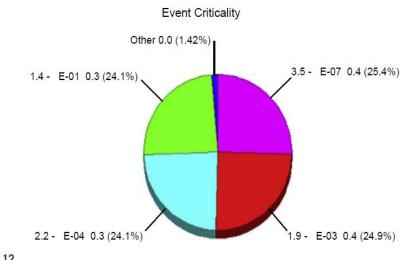
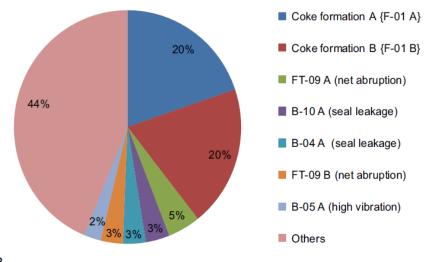
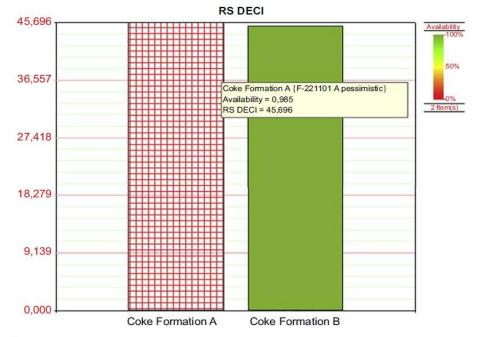



FIGURE 4.12

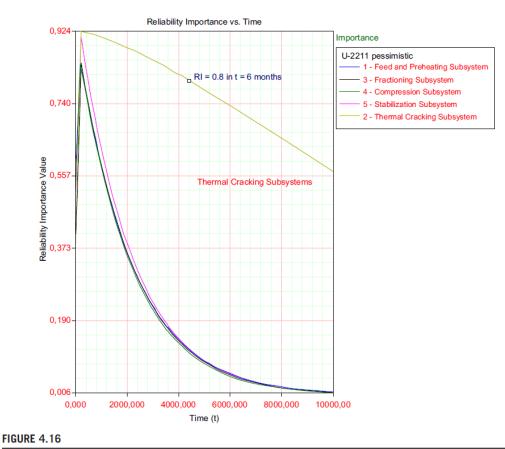
Percentage loss index.

FIGURE 4.13

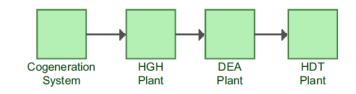

Failure index.

Availability Ranking				
Block Names	Availability			
B-04 A (Seal leakage)	99.87%			
Internal Corrosion (P-03)	99.52%			
External Corrosion (P-03)	99.46%			
Coke Formation B (F-01 B)	98.53%			
Coke Formation A (F-01 A)	98.51%			

FIGURE 4.15


Availability rank index.

Step 6 - Criticality Analysis (cont)


FIGURE 4.14

Downtime event criticality index.

Reliability importance index.

Step 6 - Sensitivity Analysis: To define the impact of internal vulnerabilities that may affect the system performance such as spare part policies, preventive maintenance policy, redundancy configuration, impact on other facilities and LCC optimization.

FIGURE 4.28

RBD (cogeneration system, HGH, Hydrogen generation Unit (UGH), Diethanolamine plant (DEA), and Hydrotreater Plant (HDT)).

Table 4.5 Turbine Stock Level							
Equipment	Tag	Component	Minimum Stock Level	Maximum Restock Time (years)	Observation		
Turbine	TG-01	Rotation part	1	0	Replace stock whenever stock achieves zero level. Random failure ($\lambda = 0.005$)		
		Labyrinth	1	0	Replace stock whenever stock achieves zero level. Random failure ($\lambda = 0.004$)		
		Shaft	0	7.5	The failure PDF is Gumbel with parameters $\mu = 10$, $\sigma = 2$. This means a low chance of failure occurring at the beginning of the life cycle. Thus 7.5 years would be the maximum replacement time, that is, 8 (10 - 2 = 8) years less 180 days		
		Rotation axis	0	12.5	The failure PDF is Gumbel with parameters $\mu = 15$, $\sigma = 2$. This means a low chance of failure occurring at the beginning of the life cycle. Thus 12.5 years would be the maximum replacement time, that is, 13 (15 - 2 = 13) years less 180 days		
		Coupling	1	7.5	The failure PDF is Gumbel with parameters $\mu = 10$, $\sigma = 2$. This means a low chance of failure occurring at the beginning of the life cycle. Thus 7.5 years would be the maximum replacement time		

Step 7 – Conclusion: To prepare a formal presentation with all involved in the RAM analysis and prepare a final report. *The formal presentation is crucial for the RAM analysis successful implementation of the recommendations because many engineers and manager will not understand the technical content of the RAM analysis report.* The RAM analysis needs to be updated through out the Design phase and reviewed during operation phases when new data comes out.

Project Title: Operational Assurance Document Title: RAM Study Basis Report Document & Rev No: REV-A

Contents

ABB	REVI	ATIONS	
REV	ISIO	N HISTORY	FEHLER! TEXTMARKE NICHT DEFINIERT
1.0	INTI	RODUCTION	
	1.1	Site Overview	
	1.2	Purpose of Document	
		1.2.1 Report structure	
2.0	DEF	INITIONS	
3.0	OBJ	ECTIVES, DEFINITIONS & SCOPE	
	3.1	Definitions	
		3.1.1 Operational Availability	
		3.1.2 Production Efficiency	
		3.1.3 Reliability	
	3.2	RAM Study Objectives	
	3.3	RAM Scope Exclusions	
	3.4	Design Life	
	3.5	RAM Study Boundary	
4.0	GEN	NERAL PROCESS SYSTEM ASSUM	IPTIONS17
	4.1	Design Capacity	
		4.1.1 Gas product	
		4.1.2 Condensate product	
		4.1.3 Water product	
	4.2	Production Profile	
	4.3	Model Indenture Level	
	4.4	RAM Study Input Data	
5.0	EQU	JIPMENT MODELLING ASSUMPTIC	DNS
	5.1	Subsea System	
		5.1.1 Flexible Riser	
		5.1.2 Flow Line	
		5.1.3 - Jumper	